Topic: Scientists wondering if signals are alien? | |
---|---|
![]() What are those things? For the past eight years, astronomers have been scratching their heads over a series of strange radio signals emanating from somewhere in the cosmos. And now, the mystery has deepened. A new study shows that the so-called "fast radio bursts" follow a weirdly specific pattern -- a finding that the researchers behind the study say "is very hard to explain." "There is something really interesting we need to understand," study co-author Michael Hippke, a scientist at the Institute for Data Analysis in Neukirchen-Vluyn, Germany, told New Scientist. "This will either be new physics, like a new kind of pulsar, or, in the end, if we can exclude everything else, an E.T." Alien signals, really? That might sound far out, but a leading scientist in the search for extraterrestrial intelligence (SETI) says we shouldn't rule out that possibility. "These fast radio bursts could conceivably be 'wake up calls' from other societies, trying to prompt a response from any intelligent life that's outfitted with radio technology," Dr. Seth Shostak, senior astronomer and director of the Center for SETI Research who was not involved in the study, told The Huffington Post in an email. "On the other hand, they could also be perfectly natural, astrophysical phenomena." For the research, which was described in a March 30 post on the online research database arXiv, Hippke and his colleagues analyzed 11 bursts detected since 2007, the latest of which was captured by the Parkes radio telescope (above) in May 2014. The scientists looked at a specific feature called the "dispersion measure" -- which represents the time differential between the detection of a burst's high frequencies and its low frequencies. (Low frequencies travel more slowly through space dust, and thus take longer than high frequencies to reach Earth.) To their surprise, they found that the dispersion measure of every pulse was a multiple of the number 187.5. Such an even spacing "is likely not produced by something like a supernova explosion," Hippke told HuffPost Science in an email. "All frequencies leave the nova at the same time, and the DM [dispersion measure] is created by dust crossing. As the amount of dust varies, the DM would seem random." Hippke said the pulses probably are generated by some as-yet-unidentified source here on Earth that emits short-frequency radio waves followed by high-frequency ones -- perhaps something as simple as a cell phone base station. If that's not the explanation, it's possible they come from a new, unknown kind of cosmic object in deep space. Or those aliens. Whatever the signals are, stay tuned! http://www.huffingtonpost.com/2015/04/02/radio-bursts-alien-signals_n_6984870.html?ncid=txtlnkusaolp00000592 |
|
|
|
Sarah Scoles New Scientist Tue, 31 Mar 2015 23:46 UTC Mysterious radio wave flashes from far outside the galaxy are proving tough for astronomers to explain. Is it pulsars? A spy satellite? Or an alien message? � Roger Ressmeyer/Corbis The Parkes telescope: tuned in. Bursts of radio waves flashing across the sky seem to follow a mathematical pattern. If the pattern is real, either some strange celestial physics is going on, or the bursts are artificial, produced by human - or alien - technology. Telescopes have been picking up so-called fast radio bursts (FRBs) since 2001. They last just a few milliseconds and erupt with about as much energy as the sun releases in a month. Ten have been detected so far, most recently in 2014, when the Parkes Telescope in New South Wales, Australia, caught a burst in action for the first time. The others were found by sifting through data after the bursts had arrived at Earth. No one knows what causes them, but the brevity of the bursts means their source has to be small - hundreds of kilometres across at most - so they can't be from ordinary stars. And they seem to come from far outside the galaxy. The weird part is that they all fit a pattern that doesn't match what we know about cosmic physics. To calculate how far the bursts have come, astronomers use a concept called the dispersion measure. Each burst covers a range of radio frequencies, as if the whole FM band were playing the same song. But electrons in space scatter and delay the radiation, so that higher frequency waves make it across space faster than lower frequency waves. The more space the signal crosses, the bigger the difference, or dispersion measure, between the arrival time of high and low frequencies - and the further the signal has travelled. � New Scientist Michael Hippke of the Institute for Data Analysis in Neukirchen-Vluyn, Germany, and John Learned at the University of Hawaii in Manoa found that all 10 bursts' dispersion measures are multiples of a single number: 187.5 (see chart above). This neat line-up, if taken at face value, would imply five sources for the bursts all at regularly spaced distances from Earth, billions of light-years away. A more likely explanation, Hippke and Lerned say, is that the FRBs all come from somewhere much closer to home, from a group of objects within the Milky Way that naturally emit shorter-frequency radio waves after higher-frequency ones, with a delay that is a multiple of 187.5 (arxiv.org/abs/1503.05245). They claim there is a 5 in 10,000 probability that the line-up is coincidence. "If the pattern is real," says Learned, "it is very, very hard to explain." Cosmic objects might, by some natural but unknown process, produce dispersions in regular steps. Small, dense remnant stars called pulsars are known to emit bursts of radio waves, though not in regular arrangements or with as much power as FRBs. But maybe superdense stars are mathematical oddities because of underlying physics we don't understand. It's also possible that the telescopes are picking up evidence of human technology, like an unmapped spy satellite, masquerading as signals from deep space. The most tantalising possibility is that the source of the bursts might be a who, not a what. If none of the natural explanations pan out, their paper concludes, "An artificial source (human or non-human) must be considered." "Beacon from extraterrestrials" has always been on the list of weird possible origins for these bursts. "These have been intriguing as an engineered signal, or evidence of extraterrestrial technology, since the first was discovered," says Jill Tarter, former director of the SETI Institute in California. "I'm intrigued. Stay tuned." Astronomers have long speculated that a mathematically clever message - broadcasts encoded with pi, or flashes that count out prime numbers, as sent by aliens in the film Contact - could give away aliens' existence. Perhaps extraterrestrial civilisations are flagging us down with basic multiplication. ![]() But a fast radio burst is definitely not the easiest message aliens could send. As Maura McLaughlin of West Virginia University, who was part of the first FRB discovery points out, it takes a lot of energy to make a signal that spreads across lots of frequencies, instead of just a narrow one like a radio station. And if the bursts come from outside the galaxy, they would have to be incredibly energetic to get this far. If the bursts actually come from inside the Milky Way, they need not be so energetic (just like a nearby flashlight can light up the ground but a distant light does not). Either way, though, it would require a lot of power. In fact, the aliens would have to be from what SETI scientists call a Kardashev Type II civilisation (see "Keeping up with the Kardashevs"). But maybe there's no pattern at all, let alone one that aliens embedded. There are only 10 bursts, and they fit into just five groups. "It's very easy to find patterns when you have small-number statistics," says McLaughlin. "On the other hand, I don't think you can argue with the statistics, so it is odd." The pattern might disappear as more FRBs are detected. Hippke and Learned plan to check their finding against new discoveries, and perhaps learn something about the universe. "Science is the best game around," says Learned. "You don't know what the rules are, or if you can win. This is science in action." If the result holds up, says Hippke, "there is something really interesting we need to understand. This will either be new physics, like a new kind of pulsar, or, in the end, if we can exclude everything else, an ET." Hippke is cautious, but notes that remote possibilities are still possibilities. "When you set out to search for something new," he says, "you might find something unexpected." |
|
|
|
![]() What with me being a Melmacian, I can easily translate those outer-space signals for you. So, let me listen to them for a bit. ![]() Hmm. The signals sound like a law-enforcement bulletin. Here is the translation: "Calling all ships! Calling all ships! Be on the look-out for Dodo David the Melmacian. Last seen flying toward ..." Uh ... Never mind. ![]() ![]() ![]() |
|
|
|
i thought you were on a scouting mission to find an endless supply of cats?
|
|
|
|
i thought you were on a scouting mission to find an endless supply of cats? The Blues Brothers were on a mission, too, and look where they ended up. I would rather not suffer their fate. |
|
|
|
Any CIA gals here?
My roof top should interest you. I'm supposing that 187.5 time delay approximates to Days (Could be Time required to recharge their power capacitors, may not also) This could be the Time required for a revolution of their light house? Going on since 2007, the article says - so likely. So its a light house asking us to home in And if these signals have been received in Hawai as well as in Australia, We need one more receiver installed in the southern hemisphere to triangulate on the source As I said, My rooftop is fairly large and willing |
|
|